
2020-08-11

1

ECE 150 Fundamentals of Programming

Prof. Hiren Patel, Ph.D.

Prof. Werner Dietl, Ph. D.

Douglas Wilhelm Harder, M.Math. LEL

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Main memory

2
Main memory

Outline

• In this lesson, we will:

– Describe the purpose of main memory

– Explain how each byte has its own address

– See how these addresses are passed in parallel to main memory

• This limits the maximum amount of memory that can be accessed

– See how main memory is used for executing programs

– See how main memory is used for storing local arrays

3
Main memory

Main memory

• Programs are stored in persistent memory

• While a program is running,

 the program requires temporary memory to execute

• Long term memory can be slow,

 but memory required during execution must be relatively fast

• Main memory provides temporary

 memory that can be accessed

– The central processing unit (CPU)

 communicates with main memory

4
Main memory

Main memory

• To access main memory:

– Each byte in main memory has a unique address

– The CPU sends an address and either flags to either:

• Retrieve the value of the byte at that address

• Set the byte at that address to a specific value

2020-08-11

2

5
Main memory

Main memory

• Okay, so each byte has its own address

– This is called byte-addressable

• If you want to change just one bit,

 you must use the bit-wise and

 bit-shift operators on a byte

0 00000000
1 00000000
2 00000000
3 00000000
4 00000000
5 00000000
6 00000000
7 00000000
8 00000000
9 00000000
10 00000000
11 00000000
12 00000000
13 00000000
14 00000000
15 00000000
16 00000000
17 00000000
18 00000000
19 00000000
20 00000000
21 00000000
22 00000000
23 00000000
24 00000000
25 00000000
26 00000000
27 00000000
⋮ ⋮

53433 00000000

6
Main memory

Main memory

• Next, since we are in binary:

– Each address will be a binary number

0 00000000
1 00000000
10 00000000
11 00000000
100 00000000
101 00000000
110 00000000
111 00000000
1000 00000000
1001 00000000
1010 00000000
1011 00000000
1100 00000000
1101 00000000
1110 00000000
1111 00000000
10000 00000000
10001 00000000
10010 00000000
10011 00000000
10100 00000000
10101 00000000
10110 00000000
10111 00000000
11000 00000000
11001 00000000
11010 00000000
11011 00000000
⋮ ⋮

1101000010111001 00000000

7
Main memory

Serial versus parallel communication

• If you read a 10 digit number to a friend,

 you are communicating serially; one digit at a time

– Also, you must know when you’re starting and stopping

• If you and nine friends each communicates one of those digits to one
of ten corresponding friends,

 you are communicating in parallel; all ten digits at once

• The first is cheaper, the second is faster

• The communication between the CPU and main memory is parallel

– A bus of n lines has each line carrying one bit of an address

8
Main memory

Addresses

• In a computer,

 an address bus has n lines, each sending a 0 or a 1

– This allows 2n different addresses

• The Intel 386 was the first common CPU with a 32-bit address bus

– 32 wires connected the CPU and main memory carrying the address

• The first common CPU with a 64-bit addresses was the Nintendo 64

– 64 wires connected the CPU and main memory carrying the address

• Incidentally, the Commodore 64 had 64 KiB of main memory

– 64 KiB = 216 bytes

– This could be addressed with a 16-bit address

2020-08-11

3

9
Main memory

Addresses

• If every byte has its own address, then

– A 32-bit address can uniquely address 232 = 4 GiB

– A 64-bit address can uniquely address 264 = 67 108 864 TiB

• The restriction of 32-bit computers to accessing only 4 GiB of main
memory led to the general adoption of 64-bit computers

10
Main memory

Addresses

• We could thus display
all addresses by
showing all 32 bits

00000000000000000000000000000000 00000000
00000000000000000000000000000001 00000000
00000000000000000000000000000010 00000000
00000000000000000000000000000011 00000000
00000000000000000000000000000100 00000000
00000000000000000000000000000101 00000000
00000000000000000000000000000110 00000000
00000000000000000000000000000111 00000000
00000000000000000000000000001000 00000000
00000000000000000000000000001001 00000000
00000000000000000000000000001010 00000000
00000000000000000000000000001011 00000000
00000000000000000000000000001100 00000000
00000000000000000000000000001101 00000000
00000000000000000000000000001110 00000000
00000000000000000000000000001111 00000000
00000000000000000000000000010000 00000000
00000000000000000000000000100001 00000000
00000000000000000000000000100010 00000000
00000000000000000000000000100011 00000000
00000000000000000000000000100100 00000000
00000000000000000000000000100101 00000000
00000000000000000000000000100110 00000000
00000000000000000000000000100111 00000000
00000000000000000000000000101000 00000000
00000000000000000000000000101001 00000000
00000000000000000000000000101010 00000000
00000000000000000000000000101011 00000000

⋮ ⋮
11111111111111111111111111111111 00000000

11
Main memory

Addresses

• Recall, however, that we can represent
four bits with one hexadecimal digit

– By convention, we will

• Leave off leading zeros

• Use ellipsis for intermediate fs

– For example,

 a310 instead of 0000a310

 f⋯fb08 instead of fffffb08

– If we are obviously discussing
addresses, we may leave off the 0x

00000000 00000000
00000001 00000000
00000002 00000000
00000003 00000000
00000004 00000000
00000005 00000000
00000006 00000000
00000007 00000000
00000008 00000000
00000009 00000000
0000000a 00000000
0000000b 00000000
0000000c 00000000
0000000d 00000000
0000000e 00000000
0000000f 00000000
00000010 00000000
00000011 00000000
00000012 00000000
00000013 00000000
00000014 00000000
00000015 00000000
00000016 00000000
00000017 00000000
00000018 00000000
00000019 00000000
0000001a 00000000
0000001b 00000000

⋮ 00000000
ffffffff 00000000

12
Main memory

Addresses

• Thus, given this 32-bit address,

0b11110101011011100001010101011110

 we could write it as

0xf56e155e

• Similarly, given this 64-bit address in hexadecimal:

0x0003a58f293e5b80

 we could determine the bits

0b0000000000000011101001011000111100101001001111100101101110000000

2020-08-11

4

13
Main memory

Main memory

• Thus, we could visualize all of main
memory as shown here

– Assume this is a 32-bit computer
with 4 GiB of main memory

0x00000000

0xffffffff

14
Main memory

Main memory

• When a program is executed,

 the operating system allocates some block

 of memory for its execution

0x70000000

0x7fffffff

Top of memory

Bottom of memory

0x00000000

0xffffffff

15
Main memory

Main memory

• For the purpose of this course,

 we will assume that the program has

 access to all of memory

– This is actually achievable with virtual memory

Top of memory

Bottom of memory

0x00000000

0xffffffff

16
Main memory

Main memory

• The instructions are stored starting
at the top of memory

– This is called the code segment

Code segment

0x00000000

0xffffffff

2020-08-11

5

17
Main memory

Main memory

• Literals are stored next
in the data segment

Data segment

0x00000000

0xffffffff

Code segment

18
Main memory

Main memory

• Memory for local variables is stored
starting at the bottom of memory

– This is called the call stack

• As we need more local variables,
the call stack will grow towards
the top of memory

Call stack

0x00000000

0xffffffff

Data segment

Code segment

19
Main memory

Main memory

• The remaining memory between the
data segment and the call stack will
be used for additional features:

– Local variables that keep their value between
function calls (static)

– Dynamically allocated memory (the heap)

Call stack

0x00000000

0xffffffff

Data segment

Code segment

20
Main memory

Local arrays

• Suppose we have this program:
#include <iostream>

int main();

int main() {

 int data[5];

 std::cout << data << std::endl;

 return 0;

}

⋮ ⋮
ffff3d7f 00000000
ffff3d80 00000000
ffff3d81 00000000
ffff3d82 00000000
ffff3d83 00000000
ffff3d84 00000000
ffff3d85 00000000
ffff3d86 00000000
ffff3d87 00000000
ffff3d88 00000000
ffff3d89 00000000
ffff3d8a 00000000
ffff3d8b 00000000
ffff3d8c 00000000
ffff3d8d 00000000
ffff3d8e 00000000
ffff3d8f 00000000
ffff3d90 00000000
ffff3d91 00000000
ffff3d92 00000000
ffff3d93 00000000
ffff3d94 00000000

⋮ ⋮

Output:
 0xffff3d80

data[0]

data[1]

data[2]

data[3]

data[4]

2020-08-11

6

21
Main memory

Summary

• Following this lesson, you now

– Know that main memory is byte addressable and each byte has its
own unique address

– Know addresses are passed in parallel through an address bus with a
fixed number of n lines or bits

– Understand that this limits available main memory to 2n bytes

– Know that addresses are represented as hexadecimal digits

– Understand that an executing program occupies a

• Code segment

• Data segment

• Call stack

– Are aware of how an array may be stored in main memory

22
Main memory

References

[1] No references?

23
Main memory

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

24
Main memory

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

